Octreotide prevents growth factor-induced proliferation of bovine retinal endothelial cells under hypoxia.
نویسندگان
چکیده
Ocular diseases such as proliferative diabetic retinopathy are the major cause of blindness in industrialized countries. The main pathologic features of these diseases are hypoxia and overproduction of growth factors resulting in pathologic proliferation of endothelial cells and new vessel formation. Particularly, hypoxia and growth factors, such as VEGF, IGF-1, bFGF and TGF beta(2), show a complex interaction in the onset and progression of the diseases. Therefore, to date, most therapeutic strategies for proliferative retinopathies have targeted proliferation of endothelial cells evoked by growth factors. Recently, a synthetic analog of somatostatin, octreotide, has been shown to inhibit the proliferation of various cells in vitro, including endothelial cells. In this study, we have investigated the proliferative response of bovine retinal endothelial cells (BREC) to growth factors under hypoxic conditions and the modulation by octreotide. We found a dose-dependent increase of cell proliferation with VEGF, IGF-1 and bFGF, and inhibition of hypoxia-induced cell proliferation with TGF beta(2). Moreover, growth factor-induced, but not hypoxia-induced, cell proliferation was attenuated in the presence of octreotide. In contrast, TGF beta(2) abolished hypoxia-induced BREC proliferation. Similar to octreotide BIM23027, a somatastatin receptor subtype 2 (SSTR2) receptor agonist was able to attenuate the growth factor-induced proliferation of BREC expressing mRNA and protein for SSTR2. Therefore, we postulate that octreotide exerts its effects mainly through binding to the SSTR2. Taken together, our findings point to octreotide as a promising candidate for the treatment of eye disorders involving growth factor-dependent proliferation of endothelial cells.
منابع مشابه
Physiological role of adenosine and its receptors in tissue hypoxia-induced
It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...
متن کاملHypoxia and vascular endothelial growth factor stimulate angiogenic integrin expression in bovine retinal microvascular endothelial cells.
PURPOSE Integrins alphavbeta3 and alphavbeta5 are cell-to-matrix adhesion molecules that have been reported to mediate vascular cell proliferation and migration. The authors investigated the regulation of expression of these angiogenic integrins by hypoxia and vascular endothelial growth factor (VEGF) in retinal microvascular endothelial cells in culture. METHODS Cultured bovine retinal capil...
متن کاملExtremely low frequency-pulsed electromagnetic fields affect proangiogenic-related gene expression in retinal pigment epithelial cells
Objective(s): It is known that extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) influence multiple cellular and molecular processes. Retinal pigment epithelial (RPE) cells have a significant part in the emergence and pathophysiology of several ocular disorders, such as neovascularization. This study assessed the impact of ELF-PEMF on the proangiogenic features of RPE cells. Mate...
متن کاملBasic Fibroblast Growth Factor Contributes to a Shift in the Angioregulatory Activity of Retinal Glial (Müller) Cells
Basic fibroblast growth factor (bFGF) is a pleiotropic cytokine with pro-angiogenic and neurotrophic effects. The angioregulatory role of this molecule may become especially significant in retinal neovascularization, which is a hallmark of a number of ischemic eye diseases. This study was undertaken to reveal expression characteristics of bFGF, produced by retinal glial (Müller) cells, and to d...
متن کاملApelin is a crucial factor for hypoxia-induced retinal angiogenesis.
OBJECTIVE To investigate the role of endogenous apelin in pathological retinal angiogenesis. METHODS AND RESULTS The progression of ischemic retinal diseases, such as diabetic retinopathy, is closely associated with pathological retinal angiogenesis, mainly induced by vascular endothelial growth factor (VEGF) and erythropoietin. Although antiangiogenic therapies using anti-VEGF drugs are effe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of endocrinology
دوره 180 3 شماره
صفحات -
تاریخ انتشار 2004